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INTRODUCTION
Obtaining valid data on the number of animals in a popula-

tion, estimating the density from these data, and determining

the confidence limits of the estimates, together are basic to in-

vestigations in ecology. Although “good” estimates of popula-

tion density are highly important (Odum, 1959:150), they are

usually difficult to make, particularly among animals as mobile

and wary as winged insects and most vertebrates. The prob-

lems arising during population estimation have at some time

hampered most ecologists, and, hence, efforts to overcome the

difficulties have lead to the proliferation of a rather vast litera-

ture, which is more or less widely scattered. Therefore, it is

proposed to review some important developments in the still

rapidly-expanding field of density estimation and to describe

a few major procedures that are recommended to insect and
vertebrate ecologists. No attempt is made to be “thorough,”

because that would require a large book, in fact, an encyclo-

pedia. One or more representative types of each of the major

kinds of procedures based on sampling of the animals are, how-
ever, discussed.

In spite of the fact that obtaining valid data is absolutely

prerequisite to the use of density models, methods for obtaining

the valid data are not taken up here. The latter would, for one

thing, extend the scope of this review to excessive length; and,

moreover, each field study is unique to a great extent, requiring

usually some unique activities to get these data. Although it is

apparent to all that no amount of tedious analysis gives useful

results when the data are biased and the bias cannot be remov-

ed, yet most of us are too prone to assume that satisfactory data

has been obtained, especially when an equation is used to

manipulate the figures. Analysis of several kinds of data, used

in several different mathematical models, should of course lead

to results that approximately agree. If they do not, further
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information should be collected and analyzed by the same
and other methods to obtain convincing evidence of the most
probable density. Good data are the heart of density estimates!

Excellent general reviews of the methods for obtaining the

figures and analyzing them, with special reference to vertebrates,

have been published by Ricker (1958), Davis (1963), Scatter-

good (1954), and others. Of special interest to entomologists is

the fine book by Southwood (1966); the first 228 pages are on
estimating population density, both in an absolute and a relative

sense, and considerable is given on how to obtain the data. This

book and one by Ricker (1958) are the two best publications

available today on the subject of estimating population density

of animals, but due to its younger age and emphasis on insects,

the book by Southwood is the most valuable publication on
the subject for entomologists. Andrewartha (1961), Menhinich

(1963), and others have published shorter reviews (but good
ones), with emphasis on the insects. Detailed reviews dealing

with some restricted groups of methods have been provided by
Chapman (1955), Hanson (1963), and others. In his review,

Davis (1963:91) pointed out that the supposedly large number
of sampling methods for determining the number of animals

actually rest on one of three basic classes of enumeration, either

(a) true censuses of the whole population, (b) sampling of the

animals themselves (rather than of their sign), or (c) indices

to the population, involving either the animals or their sign.

( Indices are of course the ratio of the number of animals seen to

the number of some unrelated kind of object, such as the num-
ber of butterflies seen per mile of roadside; or the number of

tracks per linear unit of pond margin, or the number of an

insect's eggs per leaf of certain plants, etc.).

Concerning the three general classes of enumeration, true

censuses are in actual practice rarely attempted because of their

excessive cost and because some of the animals may escape

counting. Ideally, a true census is most practical when the

animals are large and live in habitat where they are easily

seen; on the treeless plains of North America and Africa, big

game are thus sometimes censused from aircraft, but even then

the areas covered are frequently not large. For the average

ecologist, a true census of a whole population, or even a small

segment of it, is usually out of the question.

On the other hand, indices are often highly feasible and yield

valuable information, but that information hardly ever can be
converted into estimates of population density. In many prac-
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tical investiagtions, it is enough to know that a population has

increased or decreased by a certain amount, relative to some
long-time set of indices, and thus a mere trend in density,

rather than the absolute population density itself, is sufficient.

Very often, however, the investigator needs to know more, and
thus he is forced to turn to sampling, the random counting of

some fraction of the population, and the subsequently extrapo-

lating to the whole population. All further material in this

paper will deal with sampling of the animals themselves.

The sampling techniques turn out to be of four general types:

(a) a count of all animals on sample plots of known size, (b)

marking, release, and re-observing of animals, (c) changes in

catch-per-effort or changes in sex or age or other ratios caused

by removal of a known number of animals, or (d) analysis of

statistical properties of the data’s distribution.

Moreover, regardless of the basic class of sampling employed,

it nearly always requires a total count of some population

component. Even in the mark-and-recapture method, while one

component is being made recognizable by marking it, the ob-

server ends up, in effect, making a total count of the marked
group and must use this total in later computations. Regard-

less of how the total count of a population component is obtain-

ed, much effort will usually be required, and in many cases

the data may still contain biases. In certain situations the work
may be restricted by well-known difficulties, such as trap-shyness

of the animals, loss of marks, natural segregation of animals by
sex or age, uncertainty that all animals on sample plots have
actually been seen, ingress and egress from study areas, and
many other problems. Now, some of the principal methods
based on sampling of the animals (not of their sign) will be
described.

TOTAL COUNTSON SAMPLEPLOTS

In this well-known method of estimating population density,

some fraction of a study area is sampled intensively and the

results are extrapolated to the total area. The major assumptions

behind the method are: (a) The animals are sampled at random,

and ( b )
all of the animals existing on each plot are counted, but

are counted only once. The method presents relatively little

complexity from the standpoint of analyzing the data, but ob-

taining reliable data is often quite difficult, especially for in-

sects that are more or less hidden or inaccessible, either in plants.
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iin the soil^ inside of other animals that are being parasitized^ etc.

Southwood (1966:99-228) has devoted the majority of his ma-
terial on estimation of density to the matter of total counts on
sample spaces and has given a fine treatment of methods for

collecting the insects or otherwise getting the required data.

As usual, the investigator will want to find the mean number
of animals seen on the sample plots, x, and the variance of the

sample mean, sh From these, he should calculate the confidence

limits of his estimated total population, Thus, if he estimates

that 50 animals (as in an insect population) are present per

sample plot but that the 95% confidence limits are ± 10, then

the true value should be between 40 and 60 of the insects per

plot. Moreover, if the investigator has sampled only 1% of the

total study area, then the estimated abundance on the whole

study area, ranges from 100 times 40 to 100 times 60; that is,

^ would lie between 4,000 and 6,000. Let us now return to the

major assumptions underlying the procedure.

To sample the animals at random, the observer samples the

area at random, and assumes axiomatically (not requiring fur-

ther proof), that this leads to a random sample of the animals.

Ecologists have frequently pointed out (see Cole, 1946, for

example) that animals are seldom distributed at random. Will

this negate attempts to obtain a random sampling? When the

animals are highly clumped, most of the sample plots will be

“blanks,” i.e., have no animals on them, while a few of the

plots will have a great many animals. Nevertheless, one can

still take a random sample of the animals by making a random
sample of the study area —

= because plots with animals and plots

with blanks should be encountered with a frequency that cor-

responds to their frequency over the entire geographical extent

of the study area. At least that is the statistical expectation

when the work is done properly. This is most important. Some
ecologists have claimed that statistical theory is automatically

invalid when animals are not spatially distributed at random,
but such ideas are, to put it tritely, “highly erroneous.” Clump-
ing of animals does not necessarily invalidate statistical theory,

but the presence of many plots with no animals and a few plots

with many animals does lead to a high variance that results,

finally, in wide confidence limits for the estimate of mean den-

sity of the whole population.

The data may form (a) a (positive) binomial distribution if

each animal has the same probability of being observed, if this

probability is not too small, and if the counts of the animals are
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independent, i.e., if the observations have no clumping or “con-

tagiousness.” The data may form (b) a Poisson distribution if

the same conditions hold except that the probability of observa-

tion is very small, actually a more common possibility in exten-

sive surveys rapidy conducted over larger areas. (Nevertheless,

in total counts on sample plots, the observer is determined to

find all or nearly all of the animals regardless of how small this

probability of observation may be.) The data may form (c) a

negative binomial or other distribution if the animals are con-

tagiously distributed, which is a very common phenomena in

nature, as indicated above. It is well known that the ratio of

variance to the mean, / x, indicates the degree of contagious-

ness of the data. In the (positive) binomial distribution, the

variance is less than the mean, in the Poisson the two are equal,

and in the negative binomial the variance is bigger than the

mean.

Grieg-Smith (1964), Kershaw (1964), and others have dis-

cussed the use of the ratio s^ / x for detecting patterns of non-

randomness among plants. Kershaw (pp. 104-108) gave data

analyzed by Grieg-Smith and diagrams and a nice discussion

showing how the size of the quadrat affects the distribution of

the data. As quadrat size is increased, the data for organisms

which are actually clumped will show, successively, a random,
contagious, and regular distribution. The most marked con-

tagion results when the quadrat size is about the same as the

average area of each clump of organisms.

Although the investigator who is trying to estimate the popu-
lation density of animals from total counts on sample plots re-

quires to keep the variance of the counts fairly low, he is con-

fronted by a dilemma. If plot size is increased; it reduces the

variance due to clumping; but at the same time the increase

in the size of individual plots often leads to a reduction in the

number of plots which can be searched, a factor that increases

the variance again.

Hanson and Ghapman (in press) proposed that, where clump-
ing was a marked problem, the number of “clumps,” i.e. groups,

of animals be counted as well as the number of animals in each
group because the distribution of the groups should tend to be
at random. Laboratory populations of mealworms (Tenebrio
molitor) were studied from this standpoint, and experimental
estimates of their density were improved by counting clumps.
Regardless of the procedure that the ecologist hopes to follow,

he should of course consult a statistician before planning his
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field surveys and at intervals thereafter to modify the surveys

as required by problems encountered.

Therefore, the intensity of the sampling that one should do

depends on the degree that the animals clump, and the degree

of precision required. According to the writer’s experience, it

is difficult to stimate the density of a population within 20 per

cent of its true value, by any practical method, and even this

degree of precision usually requires intensive sampling. In fact,

Davis (1963:117) said that investigators “will have to spend

fantastically greater time and money on estimates than has been

done in the past, if they wish to detect changes of much less

than 25-50% of the population.”

The size of sample that is required to give any desired size

of confidence interval is covered by most textbooks of statistics,

for example, Snedecor (1946:457). The standard equation for

the statistic t is solved for the sample sizes; it may be remem-
bered that the definition of t is

(T—fi)
t =

s _
X

where as usual x is the mean of the sample; fx (mu) is the true,

but unknown mean of the whole population; and s is the stan-

dard error of the mean, that is to say, s / \/n. The symbol s

refers, of course, to the standard deviation, which is the square

root of the variance estimate, s^ After the expression equivalent

to the standard error, s / is substituted into the definition

for t, the equation is then solved for n, specifically the sample

size required in order to achieve any desired level of confidence

for any selected permissible error, viz.,

n = T sV (^

—

The investigator must decide on the amount of error that he

can tolerate and substitute this in place of Y—jx, and he must
decide on the degree of confidence he wishes and look up the

corresponding value of t in the tables given in most textbooks

of statistics. It may be useful to remember that when the

sample equals 60, t equals exactly 2.000, and that as n increases

beyond 60, t changes so little that in empirical work the value

of t can be safely called just 2. To illustrate concerning the

allowable amount of error, one might expect, for example, that

Y would be about 20; but that an error of 15%, or 3 (i.e., 15% of

20), would be tolerated. Thus, 3 would be inserted in the de-

nominator of the equation for sample size, and it would be
squared to become 9.
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To use this equation properly, the investigator must have

some prior knowledge of the variance to be expected. If this

prior knowledge were already at hand, the normal procedure

would be to then (a) while in the office, estimate the size of

sample that is required for the definitive study, and (b) go in

the field and collect this sample. Where is one going to get a

prior knowledge of the expected variance? It must either come
from previous attempts to sample this same population, by es-

sentially the same methods that are now used, or one must

make a special pilot study to get the estimate of s^ That is, if

necessary, the worker takes a smallish preliminary sample of

the population in the regular way and calculates its variance;

the resulting value is then inserted in the equation just given to

estimate how big the subsequent main sample must be. Note

that one cannot take a sample of the population and then,

a posteriori, say that the sample was big enough. All one can do

is to say that future samples —if taken the same way —will

have to be equal to, or greater than, some calculated number in

order to give the required precision with the required level of

confidence.

What should the investiatgor do to get random samples?

First, he usually should on paper divide the study area into

numerous equal-sized plots. If fairly large areas are involved,

the most convenient way to do this is to take an aerial photo-

graph of the study area enlarged to perhaps 10-15 centimeters of

photograph per linear kilometer on the ground and to lay out on
the photograph a grid of lines that is so constructed as to give the

desired number of plots, and then one should give each plot a

permanent identifying file number. Finally, the plots to be
studied should be selected by drawing their file number from a

table of random numbers, such as the table given by Fisher and
Yates (1957:126-31) and many authors in textbooks of statistics.

This process will tend to rule out human choice of plots to be
sampled, and it is usually the most practical way to obtain a

random sample on land. Therefore, in terrestrial ecosystems the

first of the major assumptions mentioned above can be met,

although sometimes, just by chance, and with a probability he
can calculate, the investigator will get a “bad sample,” in the

sense that it will not be very representative of the whole study

area. Random sampling in aquatic ecosystems is much rfiore

difficult since the space sampled is a volume and boundaries

are difficult to establish, a matter which will be commented on
further below.
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The second major assumption included the idea that all of

the animals present on the study plots were counted, but this

will almost never be possible unless one is working with large

plants, or elephants, or other very large and visible animals.

Little need be said on this point, for the most convincing argu-

ments are furnished by each reader’s own field work. No matter

how carefully the plots are searched, some of the animals are

likely to be missed unless the plots are very tiny and searched

diligently. There seems to be no practical way to estimate the

amount of error caused by not finding all of the animals except

to do the “total” counts repeatedly and calculate “efficiency” by
the method of Seierstad et al. ( 1967 ) ,

or to compare results to

those obtained from a completely different model.

The highest number seen would, of course, usually be consid-

ered the best number, but it could be inflated by chance influx

of animals on to the plots from peripheral areas.

Included in the second assumption was the idea that very

few or none of the animals were counted more than once, but

this may not be true in practice. The assumption is most likely

to be met in animals of low mobility, especially when the animals

make no particular eflFort to avoid the observer, as in insect

larvae, snails, etc. On the other hand, when dealing with highly

mobile animals, such as most adult butterfles and many other

arthropods and vertebrates and some members of other classes

—some counted animals may move rapidly away from the ob-

server and end up on another plot where they will probably be
counted again. However, it is much more likely that, if an

animal is unusually mobile, it will flee from the plot before the

observer counts him; and is is not likely to be counted later.

Thus, in work on highly elusive animals, the method of “total”

counts on sample plots frequently gives under-estimates.

In summary, the three major assumptions are difficult to

meet, and, hence, “total counts” on sample plots often yield only

poor estimates of population desnsity. Although randomness

of samples can be attained, the plot size and the sample-size

must be increased as clumping increases. Some animals are

usually overlooked and not counted, even when searching for

them is thorough and careful, but this error may be partially

counteracted by the fact that other animals were counted twice

or more. Where animals are comparatively wild and mobile, as

among many of the insects and vertebrates, the estimates will

often be biased downward. Nevertheless, the procedure is
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widely used and in many cases is the most practical method of

sampling.

In the past, investigators have had no good way to establish

whether or not important sampling error occurred when making

“total” counts on sample plots, except to estimate population

density with several different models and sources of data to

see if results approximately agreed. Very recently, however,

Seierstad, Seierstad, and Mysterud (1967) gave two procedures

for estimating the efficiency of surveys designed to yield total

counts. The first of their two methods requires that repeated

counts be made on the sample areas, and evidently during each

of these the observers attempt to find all of the animals. Due to

random events, the total number of animals seen during each

complete survey tends to vary somewhat. Seierstad et al. as-

sumed that X individuals are seen in each total survey ( for all

sample plots combined) and, furthermore, that the X/s are inde-

pendently and binomially distributed. They found that the

estimated probability of seeing one specific animal, was given

by
s^

^ = 1 —
X

After 0 was found, one could of course estimate the total abund-
ance on the sample area from the ratio x / ^. A formula for the

estimated variance of ^ was included.

Further details of this procedure of Seierstad et al. ( 1967 )
will

not be mentioned because it seems to result in the same esti-

mator that was derived independently by Hanson and Chapman
(in press). The latter workers, however, designed their own
method as a primary estimator of population density in its own
right when rapid, incomplete counts were to be made, not to

determine survey efficiency of total counts. Near the end of the

present report the procedure of Hanson and Chapman will be
described briefly. The method of Seierstad et al. mentioned
above and their other one are valuable attempts to give checks
on the efficiency of so-called total counts. However, their report

did not mention experimental tests of the method and it did
not comment on the fact that data from individual animals are

seldom distributed binomially.

Before leaving the matter of total counts on sample plots,

a peculiarity should be noted; the method normally presumes
to apply to areas, whereas animals such as insects, birds, and
fishes usually move about in volumes. For example, if the in-
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vestigator were studying the question of how many insects

of some tree-inhabiting species lived on each “unit area” of a

forested tract, he would probably take a volumetric measurement
by estimating the number in insects per tree (or per part of a

tree) and multiply by the number of trees per unit area. This

presents no difficulty in theory except that such estimates do
not fit the usual definitions of density and cannot be readily

compared to those that do pertain essentially to two-dimensional

space. Partly because of this difficulty and also because it is

hard to delimit the boundaries of sample plots in aquatic habi-

tats, fishery workers and some other kinds of specialists have

emphasized the marking procedures for estimating population

abundance or density or both, the subject of the next section.

ESTIMATING POPULATIONDENSITY BY MARKING

Introduction

Probably more has been written about estimating density in

this way than by all others combined. Chapman (1948) and

Schaefer ( 1951 )
found that the procedure dates back at least

to La Place in 1783, who used the method, in effect, to estimate

the human population of France; but Petersen (1896), working

in Denmark on fish, is often said to be the first to estimate the

abundance of nonhumans in this way. Bailey ( 1952 )
and

LeCren (1965) believe, however, that Petersen did not use

marking to estimate density although he used it for other pur-

poses. Rather, according to LeCren, Dahl (1917) in his book
on trout was the first to publish the use of the method on ani-

mals. His procedure was explained again in a condensed English

translation (Dahl, 1919). Thus, it is not justified to call such

marking methods the “Lincoln Index,” since Lincoln (1930)

did not publish on the matter until later. In the period since

1930, many writings dealing with elaborations of the basic

model have appeared, and equations for confidence limits have

been derived. The best overall summary and interpretation of

the extensive literature so far is that of Ricker (1958). There

is much of value on this and many other aspects of population

dynamics in the important book by Beverton and Holt ( 1957 )

.

Southwood (1966:57-98) gave a highly useful discussion of the

method of estimation based on marking, and he reviewed and
cited much literature on the subject.

As is becoming widely known, the underlying idea of the

marking methods is that some animals of a population will be
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caught, marked alive, and released back into the general popu-

lation. After the marked animals distribute themselves around

to become mixed up with unmarked ones, a new sample is cap-

tured, and the fraction of this second sample containing marked
animals is determined. Knowing the total number marked, and
the effect this total of marked animals had on a later sample —
by causing a certain fraction of the sample to bear marks —the

investigator can quickly perform the simple arithmetic required

to estimate the abundance of the whole group studied.

Although it is most usual to mark the animals artificially,

the theory of the method is equally applicable to animals which

bear natural marks. Likewise, although it is most usual to re-

capture the animals, re-observation of free-ranging, noncaptive

animals is also adequate if the artificial or natural marks can be
distinguished during the second period of sampling.

As usual, valid data must be obtained, and often that is very

difficult. Ricker (1958:86) listed several conditions that must
be met in order to justify the use of the most basic model on
fish populations. These conditions would apply to other popula-

tions as well and they are:

1. Marking does not increase natural mortality.

2. Marked animals are neither more nor less vulnerable to the

recapturing operations than are unmarked ones.

3. The marks do not come off the animal or otherwise become
invisible (as in the case of dyes which fade out), and they

are recognized and reported.

4. Either the marked animals mix up randomly with the un-

marked ones, or, at least, the second sampling and recap-

turing is at random with respect to the locations of the

animals as a whole.

5. There is little, if any, recruitment to the population.

To Ricker’s list here, one can add a further well-known re-

striction, that

6. Marked animals do not leave the area of study and do not,

in effect, become replaced by unmarked ones which move
in.

R should be noted that the fifth and sixth requirements above

lead to one basic condition, that the fraction of the population

bearing marks does not change. Procedures to follow when this

fraction does change become somewhat “involved” but are well

covered by Ricker (1958:111-144) and others. Steps that might

be taken to offset lack of fulfillment of the other conditions were
also discussed at length by Ricker (1958:86-100). Obviously
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the shorter the time between the two samplings the less the

possible effect of recruitment or movement of marked animals

out of the area.

Two Samples Taken
The original Dahl (or Petersen) Estimator required two sam-

ples only; after the samples were taken a proportion was estab-

lished that said basically the following:

Number of Animals in Number of Animals in

Whole Population Second Sample

Number of Animals in Number of Animals in

First Sample, All of Second Sample That
Which Are Marked. Had Marks.

The equation can be solved for the number of animals in the

whole population, but the solution is slightly biased and K, the

estimated total population or segment being studied, diverges

more and more from K, the actual total population or total of a

segment, as the sample becomes smaller. Several workers have,

therefore, proposed helpful refinements of the basic equation

indicated above in words, of which one by Bailey ( 1951 )
is

X, (X2 + I)

X,„ 4- 1

Xi is the total number of animals in the first sample and all are

marked after their capture, X2 is the total number in the second

sample, and Xi ,2 is the number among the second sample that

bear marks. The latter symbol carries the subscripts “1^2” to indi-

cate also that these animals bearing marks have to be ones which

were caught twice, that is, in sample 1 and sample 2.

The addition of 1 to X2 in the numerator and of 1 to Xi ,2 in the

denominator, Bailey’s refinement, has important consequences in

small samples, where usually Xi ,2 is especially small, but in

large samples the corrected equation of Bailey gives results

nearly the same as in Dahl’s original expression. .

The investigator should, as usual, calculate the variance of K
so that he can find the confidence limits of his estimate of

abundance. Although better methods of calculating the variance

have been found (see the review of Ricker, 1958:84-85), it is

usually adequate to approximate the confidence limits by read-

ing directly from tables of limits for the binomial distribution,

especially if an appreciable fraction of the population is marked,

say 8-10% or more.
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When looking at tables or charts giving the binomial confi-

dence limits, what is the random event which is initially being

studied? The random event is the question of whether or not

any given captured animal in the second sample bears a mark;

each animal is marked or is not, and finally after looking at all

the animals in the second sample, the investigator can establish

an estimate of the probability, that any given animal in the

whole population is marked. From an appropriate table, such as

Snedeco/s (1956:4-5), one looks up the confidence limits for the

probability that was calculated from the sample. Suppose that

a second sample of some particular size had 0.2 marked animals

and that the binomial table (for the particular sample size and
selected level of confidence) showed its confidence limits to be
±: 0.05. Therefore, ^ was expected to vary from 0.15 to 0.25.

As a result, Xi ,2 in the Dahl Estimator would vary up or down
accordingly. As one might suspect, the investigator solves the

equation for twice, using first the lower limit for ^ and then

the upper limit. Some people prefer to use the Clopper-Pearson

charts where the confidence belts are shown in graphic form for

various sample sizes. Adams (1951) reproduced several of the

charts for the binomial confidence limits, as well as several for

the Poisson limits, and gave a good discussion of their use. The
Clopper-Pearson charts of the binomial limits are also shown in

some textbooks of statistics, such as the one by Steel and Torrie

(1960:458-459).

To take another example, suppose one found from two sam-

ples, involving marking and later recapturing, that Xi equalled

100 and X2 also equalled 100, but Xi ,2 equalled 20. Therefore, ^
(the estimated probability that any given animal in the whole

population would bear a mark) in turn equalled 20/100. Thus,

for some selected level of confidence, say the 95% level, Xi ,2

would be within these limits (Snedecor, 1956:4-5):

13 < Xi,2 < 29

Finally, although the best estimate of K would be

down to

100 ( 100 + 1

)

10,100

20 + 1 21

rally vary from

100 (100 + 1) 10,100

13 + 1 14

100 (100+ 1) 10,100

29 + 1 30

= 336.7 .
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Multiple Samples Taken (Schnabel’s Procedure)

For some time, the original attempts to estimate population

density by marking involved just two samples, but subsequently

the methods of LaPlace and Dahl were extended to cover num-
erous samples taken over a longer or shorter period of time and
in many different circumstances. As a result, a voluminous

literature has arisen on the subject, and has been augmented
practically every month to the present time. To date, the best

general review of the multiple sampling procedures was given

by Ricker (1958:100-144), and his work should be consulted

for further details. The papers by Chapman (1952, 1954) and
Schaefer ( 1951 )

are also of unusual value in this regard.

The assumptions required now are the same as those for only

two samples. Multiple marking and sampling can still yield

estimates of population abundance even when recruitment or

immigration causes change in the fraction of the population

marked, but the details of the adjustments which must be made
are beyond the scope of the present paper; the interested reader

is referred again to Ricker. According to Ricker (1958:100),

beginning in the 1930’s several workers were known to have

used repeated marking and recapture or reobservation, that is,

multiple samples; but apparently the first of these to publish

the theory of the method was Schnabel ( 1938 ) . It turned out

that her procedure was only a slight, although important, ex-

tension of Dahl’s ( 1917 )
formulation and was as follows

:

As before, is the estimate of total population, but the remain-

ing symbols have been modified slightly; X
,

are the animals cap-

tured on the i ^’T)ccasion, that is, on any given occasion one

wishes to consider; X,i, is the total number of animals that have

been previously marked and released alive, that is, those marked
successfully in the samples X^, X2, ... Xj_j; and Xi,mis the number
of animals in the (i**^) sample which bears marks.

As was true of LaPiace’s and Dahl’s original procedure, the

above expression was discovered by biometricians to be slightly

biased, the more so as the number of recaptures became smaller.

Therefore, for large populations several corrections were pro-

posed, of which Chapman’s (1952) adds 1 in the denominator.
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Although the adding of 1 in the denominator of Schnabel’s

original expression may seem like only a slight change, it leads

to relatively large differences in estimates of the total population,

K; especially when the sum of the number of recaptures, SX
j ^

is less than, say, 50 or 60.

It must be remembered that, in the multiple capture pro-

cedure, the number of captures on each given date, X i ,
must be

multiplied by the number of animals marked prior to that date,

Xm. Then each of the resulting products must be summed cum-
ulatively down through the last date when a sample was cap-

tured.

Let us consider the following example: Suppose that 50 mice

were caught, marked and released on a given date, the first of

a series of samples; on the second date, 40 mice were caught of

which 11 were already marked; and on the fourth date, 60 were

caught of which 20 already bore marks; following this, the work
was stopped. Of course, on the first three dates, any animals

not bearing marks when first noticed in the traps were immedi-

ately marked before they were released. A table of the data

and some resulting computations would look as follows:

Sample
Number

1 0 50 0 0

2 50 40 2,000 8

3 82 35 2,870 11

_4_ 106 60 66,360 20
— — — 71,230 39

Therefore, the Schnabel estimate (with Chapman’s modification)

for the total population was
. 71,230

K =: 1,781

.

39 + 1

Schumacher and Eschmayer (1943), Chapman (1948, 1954),

and DeLury (1958) gave formulas for the variance, and Ricker

(1958:102-103) has nicely illustrated the use of some of them.

However, calculating the confidence limits for the Schnabel-type

estimates of population density, by formula, is somewhat tedious

and so will not be discussed here.

Fortunately, Chapman (1948) has provided a table that ap-

proximates the confidence limits where the ratio of marked to

unmarked animals is small and the distribution of marked
animals can thus be approximated from the Poisson distribution.
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Within the body of Chapman’s table, reproduced here as Table

1, he gave the upper and lower bounds, at the 95% confidence

level for the ratio K/ S (X
j ); and he has set these bounds

opposite to appropriate values of X| We notice that since

Chapman’s table shows the confidence limits for the ratio

K / X (X X,„ ), it is easy to “plug in” ones own observed values

by multiplying the product (XiX,„), from the last line of the

data in a Schnabel table, times the lower bound which was read

off from Chapman’s table. This is equivalent to cancelling the

denominator of K /X(X,Xni) and leaves just K, or that is in

this case the estimated smallest total number of animals on the

study area. The same procedure would be repeated for the up-

per bound shown in the table, and it would give the upper
bound for K.

In the hypothetical example shown above, the last line of the

Schnabel-type table gave a sum of 39 animals which were found

to bear marks when recapturing was done. Therefore, one would
enter Chapman’s table, Table 1 of this report, where Xi,n, = 39,

for which the ratio K /X(X i X,„
)

has limits of .01805 and .035.

Multiplying the latter two fractions times the sum of (X^X^^j)

shown in the last line of the example, that is, 71,230, one gets

about 1,282 and 2,493; these are, therefore, the upper and lower

limits at the 95% confidence level for the number of mice that

was estimated in the example above to be 1,781.

As the sum of the recaptures increases, the confidence limits

narrow rapidly because the Poisson distribution is less skewed
as sample size increases. Although, as can be seen, the original

table extended only to a total of 50 recaptures, large-sample

theory based on the z-distribution could be used for totals larger

than 50, as Chapman (1948) pointed out. That distribution

would provide an approximation to the binomial distribution,

where the fraction of the total captures that bore marks is con-

sidered the mean of the binomial events, but the interested

reader should consult statistics textbooks for a review of this.

Many other developments based on marking have occurred.

In fact, Ricker (1958:81-83) showed that four major methods

and two or three variations of each are available for estimating

population density by marking. “Point” sampling, or “Jackson’s

method” is a major variation that will now be mentioned briefly.

During the preceding discussion, it was implicitly understood

that the population was closed, that birth, or death, or migration,

or some combination of them did not occur in the time between

samplings; or, if one or more did occur, they did not change the
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Table I.

95 Per Cent Confidence Limits for K/x,XrTi

Lower Limit

0.0885

Upper Limit
x,^ Lower Limit Upper Limit

0.0720 19.489 26 0.02478 0.0563

0.0767 2.821 27 0.02408 0.0539

0.0736 1.230 28 0.02342 0.0516

0.0690 0.738 29 0.02279 0.0495

0.0644 0.513 30 0.02221 0.0475

0.0600 0.388 31 0.02165 0.0457

0.0561 0.309 32 0.02112 0.0440

0.0526 0.256 33 0.02061 0.0425

0.0495 0.217 34 0.02014 0.0410

0.0468 0.188 35 0.01968 0.0396

0.0443 0.165 36 0.01925 0.0384

0.0420 0.147 37 0.01883 0.0372

0.0400 0.133 38 0.01843 0.0360

0.0382 0.121 39 0.01805 0.0350

0.0365 0.111 40 0.01769 0.03396
0.0350 0.1020 41 0.01733 0.03300
0.03362 0.0945 42 0.01700 0.03210

0.03233 0.0880 43 0.01668 0.03124
0.03114 0.0823 44 0.01636 0.03043
0.03004 0.0773 45 0.01606 0.02966
0.02901 0.0729 46 0.01578 0.02892
0.02806 0.0689 47 0.01550 0.02822
0.02716 0.0653 48 0.01523 0.02755
0.02632 0.0620 49 0.01498 0.02691

0.02552 0.0591 50 0.01475 0.02625

1 am j^rateful to Dr. Chapman for permission to reprint this table.
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tag ratio (of marked to unmarked animals.) However, the

“point” sampling method contains refinements that can be used

to estimate density even when extraneous changes do occur, and

also the method permits estimates of birth and survival rates.

The general approach seems to have been originated mainly by
Jackson (1936; 1939) while analyzing a population of tsetse-fly

(Glossina morsitans). However, the work was immediately, or

perhaps concurrently, expanded in the “trellis diagram approach”

by Dowdeswell, Fisher and Ford (1940), because the latter

authors state (p. 131) that, “The theory of the interpretation of

recapture frequencies has been gradually developed in collab-

oration with Dr. C. H. N. Jackson for many years during his

researches on the tsetse fly in Tanganyika territory,” and, more-

over, Jackson in his 1939 paper (p. 246) acknowledges the

“invaluable help” of Prof. R. A. Fisher and Mr. W. L. Stevens.

Two main variations were published by Jackson: In the first,

called the “positive method,” one short period of marking is done,

but a number of periods of recapture take place; in the “neg-

ative” method, marking is done on a number of dates but recap-

tures are made on one date. Andrewartha (1961:26-34) discus-

sed the method, including the trellis diagram and illustrated

with detailed examples (pp. 202-210). The explanation of the

“point” sampling method of estimating population density,

given by Jackson (1939) himself, is fairly clear, and the brief

treatment in Dowdeswell, Fisher, and Ford (1940) is commend-
able. Numerous others have studied the method and their con-

tributions are evaluated by Chapman (1954).

In the present relatively brief review of a huge field, it is

intended only to indicate some of the main developments, and
therefore, the equations for the “point” sampling techniques

will not be mentioned, particularly since the procedure neces-

sarily becomes somewhat “messy” and involved. However, the

following may indicate a general line, without regard to any
specific publication, that can be followed to go around the

problem of deaths, births, and other factors which change the

tag ratio.

As is well known, one can estimate mortality and survival

rates in a stationary population by (a) marking a cohort of

animals in a very brief period, (b) capturing successive samples

at later times in the future, in order to study change in the

tag ratio as the marked animals die out and are replaced by
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unmarked ones, and (c) calculating the rate of mortality in these

marked animals from the change in tag ratio. (This or some-

thing similar is commonly done in constructing an age-specific

life table, for example.) Knowing the rate of decline in the

marked component and its rate of replacement by unmarked
animals, one can then calculate how many marked animals

should have existed on some prior date if a given number exists

now. This same idea of projecting backward can be used when
the decline in marked animals is due to egress from the area, or

when it is due to a combination of death and egress. Thus a

corrected number of recaptures can be derived and the total

abundance estimated, all in spite of the fact that the tag ratio

was changing as sampling continued over a fairly long period

of time.

In brief summary, the marking methods are extremely valu-

able and consequently widely used. Fortunately, the estimators

do not require the data to form any specific distribution, al-

though the confidence limits for the models require specific dis-

tributions of data. The biological problems are, as usual, more
acute than the statistical ones, and eventually they tend in many
cases to violate the assumptions on which the models rest, espe-

cially when multiple sampling is used and longer periods of time

go by. Changes in the animals’ behavior cannot readily be com-
pensated for by statistical refinements, and herein lies the princi-

pal shortcoming of the marking methods, the tendency for the

animals to become trap-prone, net-shy, etc. Moreover, many
man-hours of work and much expensive trapping material are

often required to catch and mark the animals, especially among
the keen, mobile ones such as the mammals and birds. If a net

can be used to strain the animals out of an aquatic or gaseous

medium, or better yet, if the animals can be attracted to a light

as in the case of many insects, the cost of the marking methods
can be much reduced. Regardless of the problems, the investi-

gator will often be well advised to estimate the density of his

specific populations by several methods, including this one, to

determine the amount of agreement among the estimates.
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ESTIMATING POPULATIONDENSITY

BY THE REMOVALMETHOD
i

Introduction
I

“Removal methods” of estimating density are evidently much
newer than those based on marking, because, according to Davis

[

(1963:103), they were first used in 1914 in Norway on bears
*

by Hjort and Ottestad (see Hjort et al., 1933). Leslie and Davis
'

(1939) also published the method, theirs being the first well

known report on this procedure. According to a valuable discus-

sion by Ricker (1958:145), a number of other workers published

reports on the technique in several countries as early as the

1940 s, but not until DeLury (1947) refined the procedure did
j

it come into common use in fiishery ecology. Moran ( 1951 )
de-

rived maximum liklihood equations for estimating density by the

removal method, but his procedure is a special case of DeLury ’s :

(J947) more general method, according to Zippin (1956).

Methods for finding the confidence limits were presented by
DeLury (1951), Chapman (1955), Zippin (1956, 1958) and
others.

During each year additional publications on the removal

method are appearing, and already the literature on the subject

is growing heavy although it has some way to go to equal the

work on the marking procedures. Fortunately, the report of
!

Hayne (1949a) and the reviews by Davis (1963:103-117),

Ricker (1958:145-184), and Chapman (1954, 1955) are excellent,

and they should be consulted for details. The reports by Zippin

(1956, 1958) also give syntheses valuable for both biometrists

and practicing ecologists. Southwood (1966:174-186) briefly

reviewed removal methods, including how the data might be

obtained among insect populations. Recently, Rupp (1966) has

simplified the field by showing that the removal methods and
tagging methods are, in principle, special cases of one and the

same scheme.

The underlying theory of all the removal methods for estimat-

ing population density is that removing a known number of

animals will cause a measurable change in some quantity that

can be determined by sampling. Some of the principal variations

on this theme are: (1) number of removals on each given date

(per unit of effort, i.e., per day, per trap-night, etc.) compared

to total previous removals, (2) comparison of number of re-
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movals (per unit of effort) on successive dates^ (3) the amount
of change in the observed sex or age ratio caused by a known
amount of removal, or (4) the amount of change in the number
of one species compared to another caused by a known amount
of removal, etc. Many other possible ratios can be studied

from the standpoint of their change resulting from a known
amount of captures (and removals).

The first two general methods are closely similar to each

other and the only applicable difference is whether the periodic

catch shall be summed cumulatively or considered separately

in the individual samples. The third method, involving change
in sex or age ratios, at first thought appears much different,

but, as was brought out by several writers (for example, Davis,

1963:106), the general idea is closely similar to the other removal

procedures; the principal point of departure is that the animals

need not be captured to obtain ratios if the various sex, or age,

or other components can be distinguished in the field and the

animals are removed only once.

Other developments included Hayne's (1949a) proposal that

the periodical catch be plotted on the Y-axis against the cumu-
lative catch on the X-axis and the results be analyzed by re-

gression methods; the point where the curve intercepted the

X-axis would indicate the estimated total population. In addi-

tion, DeLury (1951) made the valuable suggestion that the

removal method and the marking method should be used at

the same time; animals should be trapped alive, marked, re-

elased, and some would be captured again, but any that bore

marks would be considered “dead” mathematically. Thus, suc-

cessive captures would have fewer and fewer unmarked ani-

mals due to the mathematical (but not real) removal of marked
ones. Chapman (1955) also considered the combination of tag-

ging and removal work in one study.

Assumptions and Data
The usual assumptions on which the removal methods rest

were covered by, among others, Ricker (1958:151-152), Davis

(1963:105), Zippin (1956), and Chapman (1955); and Zippin

condensed them down to three main ones:

1. The population must be essentially stationary during the

period studied, except for the change caused by the in-

vestigator's removal; that is, births, deaths, immigration,

and emigration do not occur, or at least, their effects cancel
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out. However, Lander (1962) and Chapman and Murphy
( 1965 )

have shown that these problems are much lessened

when one is estimating density with what the latter call

“survey-removaF methods, i.e., those involving removal

with associated change in sex or age ratios, etc.

2. The probability of capture (or removal) is the same for

each animal.

3. The probability of capture (or removal) for any given

animal is the same during each different period when
capturing (or removing) is done.

To these I would add:

4. In all but the survey-removal methods, the unit of effort

during successive removals must be approximately con-

stant.

As the authors mentioned above and other workers pointed

out, the assumptions are frequently not fulfilled, especially when
the removal is carried out over a long period of time. The
longer the period of time that has elapsed, the more that animals

from outside of the area of study are likely to move in and take

over the home ranges of animals that man has removed; the

mathematical removal of live ( tagged
)

animals that are returned

to the population tends, however, to overcame the problem of

ingress, inasmuch as the animals’ home ranges obviously do not

become vacant when the animals are returned alive to the gen-

eral population. Also, the longer the time between surveys, the

more likely that the population abundance will change due to

births and deaths, and the more likely that the behavior of the

animals will also change.

A pecularly bad problem with removal methods is the change

in “catchability” of the animals, since, of course, those animals

that are most accessible, most favorably inclined toward the trap

bait, least wary, etc., will tend to be removed first; and the

longer that the netting, trapping, fishing, or shooting goes on,

the more difficult it will be to capture the average animal still

remaining at large.

The amount of effort expended by the investigator during

successive removals is probably often not the same. Even though

the trapper (netter, hunter, etc.) may put in the same number
of hours on each period or removal, he may work harder during

some than during others, or his work may gradually become
more efficient as he continues, resulting in higher catches of

animals in relation to the number then present. In the survey-

removal variation, usually only one removal is made, and of

course then variations in effort or variations in probability of
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capture are not harmful.

Inconstant susceptibility of the animals to the capturing tech-

nique is the largest potential source of error, according to Ricker

(1958:151), for most of the removal techniques. As usual, we
should estimate population density by a variety of methods and

compare the results to better judge the reliability of the several

estimates.

To sum up the bases on which removal procedures rest, one

finds that two main comparisons may be made among the “re-

moved” elements: (a) current removal from the population at

large as compared to previous removals, or (b) removal of

some restricted natural segment of the population, such as a

sex or age class, compared to removal of some other class. Con-

cerning removal among the population at large one may have

(1) actual removal or (2) marking and replacement of live

animals that are treated mathematically as dead. The resulting

estimates of the population will obviously be made by either

(a) plotting the data on graph paper and drawing the best

linear regression line obtainable from gross visual inspection or,

preferably, from fitting the line by the least squares method;

or (b) by solving various formulas, collectively called “multi-

nomial methods.” From the standpoint of analysis, actual re-

moval and mathematical removal of animals drawn from all of

the components ofthe population can be handled by the same
models, whereas the techniques requiring a selective removal

of some restricted component of the population (as a sex or age

group) require somewhat different approaches, especially inas-

much as only one removal normally occurs in practical work.

Current Removal Relative to Previous Removal
Regression —The number of animals removed on a given

date per unit of effort, or per cumulative total of animals pre-

viously taken, etc., yields one point on a graph. When the same
work is extended over several dates, successive points in a scat-

ter diagram can be drawn. It is straightforward and relatively

simple, to calculate the line of best fit, based on the well-known
least-squares regression. The formulas for linear regression are

given in textbooks of statistics. Let it be supposed that one plots

the number of animals successively removed (either actually or

mathematically) per unit of effort against the total number of

animals previously removed. Let it be understood that the num-
ber caught per unit of time, such as per trap night, will be the

dependent variable Y and the total number of animals previously

caught will be the independent variable X. ( The “unit of effort”
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must be closely controlled or large errors will result.
)

Then^ in

the standard terminology of regression methods (see for ex-

ample, Snedecor, (1956:123-125),

Y = b(X—5) + y,

where Y is the best-estimated value of Y as defined above; y is

the average of the Ys, that is, the average number of animals

captured per unit of time; x is the average of the X’s, that is,

the average of the cumulative total number of animals captured

during the entire period. Regarding the latter, consider, for

example, that 25 animals were trapped the first night, 21 the

second night, 18 on the third, and 12 on the fourth. The cumu-
lative totals are, respectively 25, 46, 64, and 76, for which the

average, x, would be 53. To continue, with the symbols, the

symbol b is defined by
b = 2xy/Sx^

where x is the deviation of X from x and y is the deviation of

Y from y. b is called the regression coefficient; it gives the slope

of the regression line, because for every change of 1 unit in X,

there will be a change of b units in Y. Thus, the line of best

fit can be calculated and drawn; where is crosses the abscissa

will be the estimated total population of the area sampled. In

addition, and this is rather important, confidence limits for the

fitted regression line can be rather easily found from the equa-

tions given in the many books of statistics.

Midtinomial Methods —When the animals are removed from
the population at large, either actually or mathematically, and
this is done only twice, the population density may be estimated

from the simple relationship (Zippin, 1958) :

A Y, - Y,

As usual, K means the estimated total number of animals pres-

ent, Yi is the number removed during the first period of capture,

and Y2 is the number removed during the second period of cap-

ture. If the animals are removed during exactly three, four, five,

or seven periods, the total size of the population may be rapidly

calculated with the aid of charts, given by Zippin (1956, 1958),

based on maximum likelihood equations.

In actual practice, the investigator would seldom use more
than seven periods of removal, because by then the remaining

(nonremoved) population would have become so small that

additional efforts would tend to be unproductive and also be-

cause enough data would already have been obtained. However,
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if one still wants to conduct more than seven periods of removal,

the maximum likelihood equations provided by Zippin (1956,

1958), based on Moran (1951), can be used. As can be seen

from Zippin (1958), the following “nasty” expression must be
solved for 1 —̂q ,

the probability of capture: „

(1 —1) yi + (2— l)y 2 + ... (n —l)y q n §

yi + y 2 + ... y 1 —̂ 1 —̂
Here yi is the number of animals removed on the first occasion,

Yz is the number removed on the second occasion, etc. up
through the n*^ period or removal; and ^ is the estimated prob-

ability that an animal will not be captured (and removed).

1 ^ « gives the probability that an animal will be eaptured

after n attempts (since p == 1 —q). Finally, the estimated

n
over the prob-total population £ equals the total catch

bility of capture, thus:

n i = 1

i = .

i-T'
The question comes up, when using the removal method, is it

better to estimate population density by plotting the data and

calculating the regression or is it better to use Zippin’s charts

and/or multinomial equations. Zippin (1956, 1958) analyzed

this question rather thoroughly, and he concluded (1958) “a

least-squares regression gives estimates that are as good as multi-

nomial estimates; however, this method requires considerably

more time to calculate than the multinomial estimate made
using the graphs. The regression method may be recommended
when the graphs are not available.”

In my judgement, if more than two periods of capture are

used, the best all-around procedure for most workers will be

to calculate the regression from the well-known equations be-

cause (a) most workers are already familiar with the technique

of calculating regression lines; (b) most workers have access

to desk calculators, and consequently the time needed to per-

form the arithmetic is negligible, especially in relation to the time

required to obtain the data; and (c) it is easier to calculate the

confidence limits of a regression line by the familiar methods
than it is to calculate the limits from the maximum liklihood

equations of Zippin (1956).
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Survey-Removal Procedures

Removal methods that involve unequal capture of two or more
segments of the population and thereby cause a change in sex,

or age, or other ratios have proliferated in recent years, although

the procedure seems to trace back to the important papers of

Kelker (1940, 1944). The statistical theory underlying the field

has been developed by Chapman (1955) and Chapman and
Murphy ( 1965 ) ,

and other aspects were reviewed by Hanson
(1963).

Among the many survey-removal procedures, one will now be
briefly described to illustrate the general field. This one com-
pared unequal numbers of males and females, but the theory

can be extended to many other situations (Davis, 1963:106).

Two randomized field surveys are made, one before the period

of removal and one afterward, and the surveys yield the sex

ratio of the animals during the pre- and post-removal times.

Next, one must obtain a total count, i.e., a census, of all removed
animals of each sex, or age group, or other components being

compared.

Kelker (1940, 1944), Rasmussen and Doman (1943), and
Petrides (1949) have published valuable survey-removal pro-

cedures for analyzing the situation where two segments of the

population are removed, all of which were compared by Hanson
(1963:53-58). However, since the method of Petrides (1949)

seems a little easier to understand, it will be reproduced here,

as follows. It is assumed that the ratio studied does not change

except due to man’s removal. Two proportions are established,

as follows:

Total Number of Mature Males,
in FrCTemoval Population —

Total Number of Mature Males Relative Number of Mature Males
Removed in Posfremoval Sample

(
1 )

Total Number of Mature Fe-
males, in Preremoval Popula-

tion —Total Number of

Mature Females Removed

Relative Number of Mature
Females in, Postremoval Sample
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Total Number of

Mature Males, in

Freremoval
Population

(2)

Total Number of

Mature Females
in FfCTemoval

Population

Fraction of a Fre-

removal Sample Total Number, of All

Composed of X Sexes, in Frcremoval
Mature Males Population

Fraction of a Fre- ^ Total Number, of All

removal Samx)le ^ Sexes, in Frcremoval
Composed of Population

Mature Females

The foregoing concepts in the word equations will now be

symbolized as follows: total males in population, before

removal; total females in population, before removal;

toal males removed; Ed, total females removed; Md, number of

males in sample, before removal; Fd, number of females in sam-
ple, before removal; Me, number of males in sample, after (at

completion of) removal; Fc, number of females in sample, after

removal; Ud, total number of all sexes, in whole population,

before removal; and Nd, number of animals of all sexes, in sam-
ple, before removal. Therefore, the two basic proportions of

Petrides (1949) were

Ab —Ad Me

and
E b —Ed

Mb
N,

Fc

•Ub

It is obvious that Alb / Nd gives the fraction of a sample which
is composed of males before removal and that Fd / Nd gives a

comparable fraction for females. After the two major propor-

tions of Petrides given above are solved simultaneously by the

usual methods, they will yield Ub, the total number of the entire

population before the rernoval began. In the process, the work-
er eliminates from the first proportion the unknowns Ab and Eb
by putting into the first equation the equivalent expressions

shown on the righthand side of the second equation. The final

result gives:
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(AdFe -EdMc)
Ub z=- — —

MbFb —McFb
Variance WhenPopulation Closed. —Formulas for the asymp-

totic (large-sample) variance of the abundance (estimated from

survey-removal methods) were developed by Chapman (1954,

1955). Apparently, many ecologists are not aware of his vari-

ance formulas for the survey-removal estimates, perhaps partly

because Chapman’s two articles were published in journals of

theoretical statistics and written in a technical mathematical

style. Unfortunately, Hanson (1963) overlooked both of these

important papers; and although Davis (1963:103 and 114) cited

both of the papers by Chapman, he said (p. 106) in his excellent

review that no estimate of variance was available for the “sex

ratio method” (survey-removal procedure).

The asymptotic variance of the population’s estimated abund-

ance before the removal began, cr^ (
Nq ), was given by Chapman

(1955) as

*^0 ^1

(Po-Pi)^

The symbols used above are those of Chapman and have the

following meanings: First, the subscript “O” refers to the begin-

ning of a period of time, that is, to the time when the first of

a pair of field surveys is made; the subscript “1” refers to the

end of this time period, or the occasion of the second survey,

made after the removal was over (and of course the subscript

“i” is a general description meaning here “any given time select-

ed”). Xj and Yj are the size of classes X and Y at times tj
,

and
the two classes combined make up Nj

,
the total population at

time t
i

. P
i

is the fraction of the total population made up by a

given class; that is, P, = Xj / Nj
;

and n, equals the size of the

i^*^ sample. Xj and Y, would have to be replaced by their ex-

pectation, the estimates previously derived from the equations

of Kelker ( 1940, 1944 )
or ones similar to them, such as Petrides’

(1949) discussed above, since obviously the true size of any
given population component would not usually be known.

Estimates WhenPopulation Not Closed. —Most workers using

the survey-removal techniques of estimating population density

have assumed that the population ratios did not change appreci-

ably in the time between the field surveys except due to man’s
removal. In other words, either the population was closed or.
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if not closed, the extraneous factors were not appreciably chang-

ing the ratios investigated. Although most populations, of course,

suffer natural mortality, have members moving into and out of

the population, and experience other changes, nevertheless it is

reasonable to believe that most of these factors do not usually

change the ratios enough to cause any large amount of error,

particularly if the time between surveys is reasonably short.

Certainly, compared to sampling errors, these other potential

errors should be small. If the investigator has good reason to

believe that his assumption is not being met, he might shift

attention to other population parameters; perhaps sex ratios in-

stead of age ratios, for example.

Lander (1962) considered methods for estimating the rate of

fishing or other removal by man based on, he said, “knowledge

of catch and of the change in composition caused by selective

removal of one class during the catch interval.” Lander contin-

ued, “From a mathematical viewpoint it [the paper of Lander]

simply shows how Chapman’s ( 1955 )
fundamental work relates

to the theory of fishing as developed by authors like Ricker

(1958) and Beverton and Holt (1957).” Among other things.

Lander presented a model which yielded the “fishing rate” even

where natural mortality occurred in the time between surveys.

He concluded that unequal rates of natural mortality directed

at the classes studied “may not be serious in practice,” especially

when the class whose rate of capture was being estimated also

suffered a higher rate of natural mortality than the other class.

Lander presented considerable theoretical material but develop-

ed the mathematics clearly in easy stages. Although Lander’s

paper dealt mainly with estimation of capture rates, it con-

tained much of value on estimating population abundance, since,

of course, once the rate of capture is estimated, the actual num-
ber of animals caught can be divided by the rate to give the

estimated abundance.

Chapman and Murphy (1965) gave several models for esti-

mating population density under several different conditions of

an open system and gave their variances. Besides deriving the

instantaneous rate of fishing or other removal by man, where
the instantaneous rate of natural mortality on the X class, M^,
equals that on the Y class. My; they also developed the more
interesting case where the natural mortality rates of the classes

were different. To accomplish the latter, they invoked again the

idea of amount of effort spent on the capture. In other words,
when the classes had unequal natural mortality. Chapman and
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Murphy inserted factors in their models to take account of re-

moval rate per eflFort expended and combined this with parts

of the standard survey-removal theory. After some compara-

tively elaborate mathematics, they finally obtained an approxi-

mation to the instantaneous rate of natural mortality for the

case of a continuous removal (“a constant level fishery,” etc.).

However, Chapman and Murphy concluded that the estimates of

the capture rates “are essentially independent” of the natural

mortality rates, and “Furthermore, it is reasonable to believe

that if Mx and My are not too widely different and are small

relative to Fx, again a common fisheries situation, the estimate

of Fx will not be appreciably affected by the inequality of

Mx, My.” (Fx is the instantaneous rate of removal by man, in

the notation of Chapman and Murphy, and Mx and My are the

instantaneous rates of natural mortality on the X and Y classes,

respectively.

)

The report by Chapman and Murphy (1965) contained con-

siderable discussion of the assumptions involved in their models

and gave variances, and for these and other reasons it is a valu-

able contribution. Unfortunately, since the equations were de-

veloped in a terse mathmatical style, with little discussion or

explanation, the report tends to be obscure.

Similarity of Survey-Removal Methods and Marking Methods

Rupp (1966) has pointed out that many methods of popula-

tion estimation based on the changes in abundance of one class

relative to another have an underlying common basis and, in

fact, are identical ff it is understood that the symbols for the

classes which are compared can be positive or negative, depend-

ing on whether animals are added to or removed from the

population. In the case of marking experiments, the marked
animals can be considered, in one sense, a new group that has

been added to existing components.

After giving the usual assumptions, Rupp defined symbols

similar to the following:

Nj = population size at time i.

1,2 = subscripts showing the beginning and end of period

studied (i = 1,2).

Pi = decimal fraction of population in a selected class, such

as M, at time i.

M, F = actual number of animals added to or removed from a

selected class compared to a contrasting class, such as,

respectively, males and females.
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Furthermore, and this is important, Rupp required that Mand F
could each take on positive or negative values accordingly as the

animals were added to the population or removed. As usual,

Pi had to differ from p 2 as a result of the addition or removal.

Rupp then wrote two basic equations:

P2 Na = Pi Ni + M,
and

N2 = Ni + M+ F.

The first equation implies on its left side that the number of

the total population, at the end of a period of study, composed
of a selected class such as M equals the number that it com-
posed at the beginning plus the number Madded (or removed),^

one must remember that M can be positive or negative and,

hence, one may be adding a negative number on the right. The
second expression was substituted for Ns in the first equation,

and the result was solved for Ni:

M--P2(M + F)

Ni = —

.

P2-™Pi
Rupp ( 1966 )

showed that the Dahl ( 1917 )
equation based on

marking is a special case of the above equations where pi = 0.

Let M now be the class bearing marks. Therefore, if p^ = 0, it

is implied that when the period of study began, no animals bore

marks. Thus, in the initial equation of Rupp, pi Ni —0, and so

P2 Ns 0 + M== M.

The latter equation can be rewritten as

Ps = M/ N,

and when R / M is substituted for ps, it gives finally the old

familiar Dahl estimator M/Ni = R/M. (R —the number

of animals in the second sample which bear marks, and, hence,

are recaptures.

)

Rupp’s ( 1966 )
formulation seems to contain one minor incon-

sistency (mostly just a matter of definition) where he said that

Ni could be assumed to equal Ns when his equations above re-

flect “addition” of marked animals to the population. The dif-

ficulty is that the marked animals are treated as though they

are actually added to the population, but of course they are

ones already present that are simply converted to a marked
status. Therefore, in the second of Rupp’s two most basic

equations, which was
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N2 = Ni + M+ F
if N2 = Ni, as stated by Rupp, then some number of unmarked
animals, that later beeomes marked, designated by me as U,

must be added to the left side of the equation to balance, where
it is understood that U = M -{~ F- This would, in a marking
experiment, convert the last equation above to

N, + U = N, + M+ F;

but since F —0, then U = M, and the result is, as it should be,

N2 = Ni+ (M —U) +0
or

N, = N, + (0)+0.
The same result seems to be achieved by a somewhat peculiar

method in Rupp’s equation (4) which is not well explained;

perhaps the problem is mainly one of definition of symbols. Rupp
( 1966 )

points out that one component such as M could be

“added” to the population (by marking) at the same time an-

other component such as F is removed; in that case F would of

course not equal 0 in the equations above.

Rupp’s interesting report gives the same conclusion that a

number of us heard expressed in a class in 1963 by one of the

instructors. Dr. W. Scott Overton, now of Oregon State Univers-

ity; and possibly the idea has occurred to others. The report of

Rupp bears out Dr. Overton’s oral, and Davis’s (1963:118)

written, statement that many of the methods for estimating

population density are essentially the same or closely similar,

that in reality the population ecologist has few basic methods
available, and that he needs more.

In summary, the removal methods may be considered from

mathematical, biological, and economic standpoints, all of which
interact to some extent. Simple yet sound removal models are

available, and more are being developed. On the other hand,

Zippin ( 1956 ) found that the precision of estimates based on
removal per unit effort was relatively low. For example, if one

wanted the coefficient of variation to be not over 20%, a rather

low degree of variation for biological work, and if the true

population size was 10,000, then 2,500 animals, or 0.25 of the

population, were required to be removed. If the population

contained only 1,000 animals, 0.45 of them would have to be

removed. If the total population was smaller or if a higher de-

gree of precision was required, an even higher fraction of the

population would of course need to be removed. Further, as

Zippin ( 1956 )
remarked, although it is normally assumed that

the population is stationary and that the probability of capture

is approximately constant, in fact both requirements are fre-
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qiiently not met. However, in my opinion the need for a

constant probability of capture can be relaxed a good deal,

for if this probability lessens in some regular, systematic

way, a suitable regression curve can still be fitted. In

general, when numerous periods or removal occur, it is

better to calculate the density by regression methods than it

is to do it by formula, partly because the regression relation

does not have to be linear. When mathematical rather than

actual removal is used, the influx of new animals into vacated

home ranges is lessened, and it is more economical to combine

marking procedures with the removal ones. Survey-removal

procedures, involving change in sex or age ratios or other rela-

tive numbers, rest on assumptions that can be more easily met
than those of the marking category, according to Chapman
( 1955 ) ,

but “
. . . in almost all cases the capture-recapture esti-

mation procedure will yield more information for the same
amount of effort.” In cases where hunters or fishermen carry

out the removal the reverse should be true. In many species the

survey-removal models of course cannot be used because no
obvious sex or age or other distinction between the classs can

be readily recognized in the field. The principal difficulty with

the survey-removal methods is that the sex or age or other

class of the population often exhibit different behavior, leading

to unrepresentative samples from the field. If the removal is

by shooting, a number of dead animals may be lost in the field,

making the count of total removed animals wrong. In spite of

these problems, the removal methods should hold much promise

and should be investigated more. Menhinick (1963) got better

estimates with them than he did with marking or with total

counts on sample plots when he studied several kinds of insects.

As usual, the worker should estimate density by several methods
and compare results.

ESTIMATING DENSITY FROMSTATISTICAL

DISTRIBUTION OF DATA

Frequency of Capture

A newer group of methods for estimating population density

of animals is that based on the frequency with which a recogniz-

able given animal, or group of animals, is seen 1 time, 2 times,

3 times, etc. Of course, in most surveys, some of the animals

will be seen 0 times, and the trick of the present class of methods
is to estimate the size of this missing category. After the num-
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ber of animals seen 0 times is estimated, the number can be

combined with those positively known to be seen 1 or more
times to give the estimated total. The present group of methods
requires the investigator (a) to mark or otherwise positively

identify individual animals and make repeated surveys to deter-

mine how often identifiable animals have been seen, (b) to

decide what is the underlying distribution from which the

truncated data are drawn and then (c) to estimate the size of

the missing class either from the formula for the distribution

or from regression methods. Some of the main variations based

on frequency-of-capture involve (a) the type of distribution

assumed, whether Poisson, negative binomial, geometric, or a

logarithmic series; and involve (b) whether the models are

maximum likelihood estimates or are moment estimates.

Craig’s ( 1953 )
paper is the earliest on the subject seen by me

and it was called to my attention by Dr. William Hovanitz,

Hovanitz has told me that during his own research on butterflies

he independently noticed the possibility of estimating the size

of the missing 0 class with use of formulas for the Poisson dis-

tribution; he later asked Dr. Sewall Wright’s advice on mathe-

matical procedures that should be followed. Wright furnished a

model; Hovanitz developed another. Hovanitz made all his data

available to Craig who presented six models, of which Method I

was due to Wright, Method 2 was Hovanitz’s general

approach and Method 5 was due to Stevens (1937).

To return from this little historical sidelight, the models de-

rived by others and presented by Craig, and those due to Craig

himself, are valuable contributions to the ever-growing literature

on population estimation. In addition, to giving the density

estimators, Craig (1953) furnished the variances for the six

models, and illustrated with data on butterflies furnished by

Dr. Hovanitz (and amply credited to him). The animals must

be individually identifiable, requiring normally that they be

captured, marked, released, recaptured, and so on, through as

many cycles as possible. As usual, the captures must be at

random. At once it can be seen that the frequency-of-capture

techniques should be combined with marking work for the

Schnabel equation; and, therefore, the remaining assumptions

underlying the Schnabel approach would have to hold.



6(3} .• 203-247, 1967 ESTIMATING DENSITY 237

Craig ( 1953 )
concluded that, although the maximum liklihood

estimators gave substantially the same results as did the moment
estimators in trials on actual field data, “nevertheless with in-

creasing sample size meaningful solutions of the liklihood equa-

tions do not exist.” Therefore, I shall reproduce here Method 1

(of Wright) and Method 2 (of Hovanitz and Craig), both

moment models and both requiring data from a Poisson distri-

bution. Symbols of Craig, slightly modified, to fit the case where

only two periods of capture are used, are:

r =: total number of different animals captured.

Xj =: class size showing number of times an animal was cap-

tured (x = 0, 1, 2... ).

szzz:Si= Exjfj total number of captures of the r ani-

mals = “first power sum”.

Sg z=; X x-fj ::rr “sccond power sum”.

fx =: number of animals caught Xj times,

n r=: animals existing in the whole population,

ft zrr estimate of n.

1,2 zz= subscripts designating the number of times a given

animal is caught.

Method 1 is the equation:

In n ~ In ( n —r
)
= s / n

,

where In signifies of course the natural logs. The solution to

the equation has to be iterative, by guessing a value of n, insert-

ing it in the equation, and noticing how close the equation is to

balancing. If not close enough, a new estimate of n is tried, etc.

According to Craig (1953) the above equation can be “readily

solved for the integer n which most nearly satisfies it by the

use of a good table of natural logarithms,” but in my experience

the equation is difficult to handle.

Method 2, on the other hand, is simple to solve but gives

coarse estimates; if desired, a trial value of n can be quickly

found from Method 2 and inserted into the more exact formula

for Method 1, as pointed out by Craig (1953). The equation for

Method 2 is:

n = s\ / (s. -- Si) .

Craig found the variance for “the proportional error of the esti-

mate of n” by Method 2 to be

CF^/^= 2n/sf .
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Craig showed the following example, based on Hovanitz’s data

on butterflies (Colias eurytheme)

:

1 66

2 3

2 69 ~ r; s —72.

ft = 72V (78 —72) =864,
o-^A/n = 2 ( 864) / 72‘‘ = 0.333.

That is, the variance was 1/3 of the estimate of n in this example,
or very high, because only a small part of the population was
sampled in that particular experiment.

Tanton (1965) estimated the population density of a mouse
(Apodemus sylvaticus) by a frequency-of-capture model, devis-

ed by Brass (1958), and based on an underlying negative bi-

nomial distribution. As Tanton said, if the “catchability” of the

animals had stayed the same throughout the population when
the capturing was done, then a Poisson model would have been
appropriate, but, since catchability varied, then the negative

binomial was more suitable.

According to Tanton, his estimate was obtained directly from
Brass’s (1958) Method A. Although Brass said that his paper

considered “simplified” methods of fitting the truncated negative

binomial distribution, nevertheless the manipulation became
fairly involved, particularly for estimating the variances. Tanton
converted the observed number of animals captured 1, 2,....n

|

times to fitted numbers, derived somewhat laboriously, from i

which estimates of parameters were finally made. Further study :

of his data by Tanton indicated that the mice did not learn to

avoid the traps, but nevertheless the probability of capture was
not the same throughout the population. The accuracy of results

from use of Brass’s (1958) method seemed to be reasonably

satisfactory to Tanton.

Eberhardt, Peterle, and Schofield (1963) and Edwards and

Eberhardt ( 1967 )
also have developed methods for estimating

population density from frequency-of-capture, but they assumed

the population fitted the geometric distribution. The latter is

similar to a negative binomial one; a succession of Bernoulli

trials is conducted and the investigator estimates the probability

that k failures precede the r^*^ success where r = 1; or to put it

another way, the investigator estimates the probability that one
success (the first one) would occur is p q'^ (Feller, 1957:155-

156).
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The paper by Edwards and Eberhardt discusses several meth-

ods for estimating population size by frequency-of-capture,

based on a geometric distribution model, of which one of the

most satisfactory ones was said to be derived from Hartleys

(1958) procedure for maximum likelihood estimation where the

the data are incomplete and a truncated sample has resulted;

Hartley mentioned that his approach was similar to the missing-

plot technique used in analysis of variance. Several of Edwards
and Eberhardt’s methods involved plotting the capture frequen-

cies and fitting regression lines. After Hartley’s approach was
somewhat altered by Edwards and Eberhardt (1967), the fol-

lowing maximum-liklihood estimate, based on the geometric

distribution, was obtained:

A Sny
N-

1 (Sriy/Sxny.)

The symbols above are those used by Edwards and Eberhardt

and mean the following: = the total number of captures

(without regard to how many of the captures represent animals

caught once, or twice, or some other number of times ) ; 2 =
the total number of different animals captured; N = the esti-

mated total number of different animals in the whole population

(or component studied).

Edwards and Eberhardt (1967) used a number of methods
to estimate the abundance of cottontail raibbits ( Sylvilagus flori-

danus) on two closely studied areas, including one a pen of 40

acres, and they found that the ''geometric models” gave good

results, particularly the equation shown above and a regression

model. Multiple marking (with recapture) gave decided under-

estimates. Nixon, Edwards, and Eberhardt (1967) tested various

procedures on several populations of tree squirrels ( Sciiirus

carolinemis and S. niger) and concluded that both of the geo-

metric models of Edwards and Eberhardt just mentioned gave

useful results, whereas some procedures based on multiple mark-
ing (with recaptures) again yielded underestimates.

The proliferation of methods continues; appearing recently is

a paper by Bennett ( 1957 )
giving a model rather related to

the frequency-of-capture ones and yet not requiring the direct

estimating of any missing class. Individual broods of ducks had
to be identified during repeated sampling, and the number of
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brood-sightings that were new were then plotted against the

cumulative total o£ all previous sightings. After enough obser-

vations were made, said by Bennett to be reached when the

ratio of new sightings to the cumulative total of earlier ones

was near one-half, this gave a curve that tended to an asymptote.

A logarithmic-series curve was fitted and the point estimated

where enough total sightings would have been made to have
yielded essentially the last newly observed brood. In efFect, it

appears to me, the size of the “zero class” is estimated indirectly

at the point where it practically vanished; this is the point where
nearly all of the unseen animals have been converted to observed

ones. Confidence limits were not provided.

Relation of Variance to Mean
Hanson and Chapman ( in press

)
have developed an estimator

considerably different in principle from others discussed here

because the method does not require that any population com-

ponent be in effect positively identified by marking, removal, or

total counts on sample plots (in principle an identification). On
the contrary, rapid, cursory, incomplete counts are made repeat-

edly on an entire study area and the observed number of groups,

and individuals within the groups, are recorded. Some conven-

ient number, say 20 to 50, of rapid surveys are made under con-

ditions as uniform as possible. The main assumption behind

the procedure is that the data on number of groups for a bi-

nomial distribution, requiring among other things that each

group will be seen or not, that the probability of observation is

the same from group to group of animals and survey to survey,

and that the observations are independent (clumping of groups

not noticable). A secondary assumption is that the number of

animals living on the study area remains nearly constant during

the period of surveys.

It is well known that in a binomial distribution the product

kg pg is estimated by the mean, where kg is the actual total

number of groups of animals livin gin the study area, Pg is the

probability of observing them during cursory, incomplete counts,

and Xg is the mean number of groups seen. It is also well known

that the binomial variance, kg pg qg, is estimated by Sg; qg is

defined by 1 —pg and therefore is the probability that any

given animal will not be seen during the incomplete counts.

The expression for the variance can be divided by the one for

the mean,



6 ( 3 ) : 203 - 247
, 1967 ESTIMATING DENSITY 241

1^9 Pg qg

kg Pg

which after cancellation of like factors and replacement of qg by
of course gives

^g = si/Xg;

from this it immediately follows that 0g = 1 —( Sg / Yg ) . Since

pg kg lEg, and thus kg =:ir^ / pg, the expression given for

pg in the preceding sentence is substituted into this latest equa-

tion to finally yield

Thus, a moment estimator of the density of the animal groups

is established, and multiplication of the estimated number of

groups. Kg, times the average number of animals seen in each

group gives an estimate of the total population of the study area.

Confidence limits for the above model, based on an approxi-

mation from the chi-square distribution, were derived by Dr.

Chapman (Hanson and Chapman, in press). Both the confi-

dence limits for the groups as well as limits for the individuals

within the groups must be found and used jointly to find the

upper and lower bounds for the estimated total individual ani-

mals on the study area. Although the equations for confidence

limits are fairly easy to use, an adequate description of them
would require more space than is practical in this review.

The model was tested considerably on laboratory populations

of mealworms (Tenebrio molitor) (Hanson and Chapman, in

press). In general, the method did not work very well, mainly

because the mealworms had a highly contagious distribution,

part of which was caused by the worms “piling up” in the

corners of the pans; even the use of the number of groups, rather

than merely of total individuals seen, did not seemingly permit

a close enough fit to the required assumptions of the binomial

distribution. When sample siz'^ was as big as 30 to 35, the

results were of course better than in trials where only 15 or 20

counts were made. Since in nature groups of animals should

tend to be distributed more at random than individuals are, the

model may have use in some situations and should be tested

further.
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The estimator just reviewed can now be compared to the one

of Seierstad et al. (1967) mentioned in the section on “Total

Counts on Sample Plots.” Evidently the models are the same or

closely similar, although the one of Seierstad et al. does not show
all of the steps in the derivation. Some of the main ways in

which the Seierstad paper differs is that ( 1 )
the confidence

limits appear to be derived differently (but further study by a

statistician will be needed to clarify the point), (2) the model

was designed to determine the efficiency of surveys giving total

counts, (3) use of the number of groups to circumvent partially

the problem of clumping was not mentioned, and ( 4 )
empirical

testing of their model was not mentioned.

The only other sampling method known to the writer that

yields estimates of density without requiring total counts, mark-

ing, removal, or other measures leading to positive identification

of all of the animals in some group, is the flushing-count method
of King ( 1937 ) ,

which was revised and improved by Hayne
(1949b). Although the procedure has many interesting and
valuable features and has had considerable use, it will not be
described further except to mention that it is based on ( 1 )

the

number of animals that are seen to run or fly from the observer

as he walks along a predetermined survey-line and (2) the

average distance between (a) the observer and (b) the spots

where the flushed animals are first seen. King’s method is thus

not based on the statistical distribution of data in the sense that

other papers covered here have been.

Summary of Models Based on Fitting of Distributions of Data
The frequency-of-capture methods require that individual

animals must be marked or otherwise made identifiable, and this

necessarily causes many of the potential shortcomings of other

methods requiring marking. The model based on the interrela-

tions of the mean and variance is nearly unique because no

component of the population need be captured, removed, or

otherwise made identifiable, either individually or as a group

(as happens in principle when total counts are made on sample

plots), and thus the data can be gathered more easily. All of

the models covered in this section suffer from the following

difficulties
:

( 1 )
Probability of capture or of field observation

may not be the same for all of the animals or their groups; (2)

population density may change during the period of study; and

(3) the data obtained may not fit the assumed underlying dis-

tribution.
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South wood (1966:88-89) claimed that any of the procedures

discussed in Craig require the animals to be exceptionally

mobile ''so that their chances of recapture are virtually random
almost immediately after release,” and thus he concluded that

the methods have limited possibilities except for “large con-

spicuous flying or very mobile animals under certain circum-

stances.” I do not regard his reservations as being entirely war-

ranted, however, because the time between captures need not

be any shorter than they are in the multiple marking scheme.

When an animal is captured on a given day, marked, and re-

leased, its presence can be ignored for the remainder of that

day if it should happen to be caught again, or it can be ignored

for longer periods. This will give it sufficient time to distribute

itself randomly within the population. In other words, all of the

initial encounters with the various trapped animals during one

day (or a small number of successive days) can be treated as

one sample all caught at the same instant. This sample can be
compared to all of the initial encounters on a later day ( or small

group of days). By initial encounters is meant the first capture

of a given animal on a given day, regardless of how many times

it has been captured on earlier days. In general, the collection

of valid data for the frequency-of-capture methods should not

any more difficult than it is for the Dahl (Petersen) mark-and-

recapture techniques.

The prospects for getting the proper data to fit the (positive)

binomial method of Hanson and Chapman ( in press
)

seem least

likely. Prospects are better for Hovanitz’s model (Method 2 in

Craig, 1953) based on the Poisson distribution. The required

assumptions for the data are even more likely to be met by the

negative-binomial procedure of Tanton (1965) and the geomet-

ric method of Edwards and Eberhardt ( 1967 ) . However, all of

the methods based on the statistical distribution of the data have

been tested so little in the field that it is not possible as yet

to say which has greater value, although the model of Edwards
and Eberhardt appears to hold most promise. Nevertheless, if

some day sound methods could be developed for estimating

population density from rapid, cursory, incomplete counts of

free-ranging animals, this would greatly lighten the labors of

the population ecologist.
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CONCLUSIONSAND SUMMARY

This relatively brief survey of the rather enormous literature

on population estimation indicates that many procedures are

available but all of them contain pitfalls. Evidently there is not

a “best” way to estimate population density for animals in

general, because each population is unique in theory and in

actuality, and each estimating procedure has strong and weak

points. Although each one given population has continuity in

time, it varies more or less continually. Results from estimating

procedures are importantly affected by the biology of the ani-

mals, especially their ecology with its changing environmental

influences. Therefore, the investigator who needs to estimate

density should have in his repertoire numerous procedures to

meet the variable ecology of the animals. Moreover, if density

in any one time-period and place is estimated by several pro-

cedures, the worker can determine if the results obtained are

nearly the same. If they are not, the work should be repeated

and possible additional procedures should be invoked.

Although a number of papers have been cited herein, many

were considered only slightly, and many more valuable writings

on the subject were not even mentioned, whether by accident

or intent. Additional papers on the subject roll off the presses

monthly or weekly, and some represent marked departures

from older procedures. The trend toward more models and

greater testing of them should continue, and it will bring slow

but sure gains in one of the ecologist’s most difBicult jobs, the

estimation of population density.
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